The complexity of coloring graphs without long induced paths

نویسندگان

  • Gerhard J. Woeginger
  • Jirí Sgall
چکیده

We discuss the computational complexity of determining the chromatic number of graphs without long induced paths. We prove NP-completeness of deciding whether a P 8-free graph is 5-colorable and of deciding whether a P 12-free graph is 4-colorable. Moreover, we give a polynomial time algorithm for deciding whether a P 5-free graph is 3-colorable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloring Graphs with Forbidden Induced Subgraphs

Efficiently coloring an arbitrary graph is a fundamental and notoriously difficult algorithmic problem. This talk focuses on the restricted problem of determining the complexity of coloring graphs which do not contain a certain induced subgraph. Combining results of Kamiński and Lozin, and Hoyler, it follows that this problem remains NP-complete unless the excluded induced subgraph is a disjoin...

متن کامل

On the complexity of 4-coloring graphs without long induced paths

We show that deciding if a graph without induced paths on nine vertices can be colored with 4 colors is an NP-complete problem, improving a previous NP-completeness result proved by Woeginger and Sgall in 2001. The complexity of 4-coloring graphs without induced paths on five vertices remains open. We show that deciding if a graph without induced paths or cycles on five vertices can be colored ...

متن کامل

Certifying coloring algorithms for graphs without long induced paths

Let Pk be a path, Ck a cycle on k vertices, and Kk,k a complete bipartite graph with k vertices on each side of the bipartition. We prove that (1) for any integers k, t > 0 and a graph H there are finitely many subgraph minimal graphs with no induced Pk and Kt,t that are not Hcolorable and (2) for any integer k > 4 there are finitely many subgraph minimal graphs with no induced Pk that are not ...

متن کامل

Approximately Coloring Graphs Without Long Induced Paths

It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on t vertices, for fixed t. We propose an algorithm that, given a 3-colorable graph without an induced path on t vertices, computes a coloring with max { 5, 2 ⌈ t−1 2 ⌉ − 2 } many colors. If the input graph is triangle-free, we only need max { 4, ⌈ t−1...

متن کامل

Three-coloring and list three-coloring of graphs without induced paths on seven vertices

In this paper we present a polynomial time algorithm that determines if an input graph containing no induced seven-vertex path is 3-colorable. This affirmatively answers a question posed by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the list-coloring version of the 3-coloring problem, where every vertex is assigned a list of colors that is a subset of {1, 2, 3}, and giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta Cybern.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2001